Contents

Dorot Series 100 – General

- Technical Data
 - Available Models
 - Design Specifications
 - Diaphragm Selection Table
 - Dimensions and Weights
 - Main Components
- Control Functions
 - M Manually Controlled Valve
 - EL Solenoid Controlled Valve
 - RC Hydraulic Remote Controlled Valve
 - PR Pressure Reducing Valve
 - PS Pressure Sustaining & Relief Valve
 - DI Pressure Differential Sustaining Valve
 - FR Flow Control Valve
 - FE Excessive Flow Shut-off Valve

Edition 11/2019
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Modulating Float Controlled Valve</td>
<td>20</td>
</tr>
<tr>
<td>FLEL</td>
<td>Electric Float Controlled Valve</td>
<td>21</td>
</tr>
<tr>
<td>FLDI</td>
<td>Differential Float Controlled Valve</td>
<td>22</td>
</tr>
<tr>
<td>AL</td>
<td>Altitude Pilot Controlled Valve</td>
<td>23</td>
</tr>
<tr>
<td>BC</td>
<td>Booster Pump Control Valve</td>
<td>24</td>
</tr>
<tr>
<td>DW</td>
<td>Deep Well (Borehole) Pump Control Valve</td>
<td>25</td>
</tr>
<tr>
<td>RE</td>
<td>Surge Anticipating Valve</td>
<td>26</td>
</tr>
<tr>
<td>QR</td>
<td>Quick Pressure-relief Valve</td>
<td>27</td>
</tr>
<tr>
<td>TO</td>
<td>Two Stage Opening Addition</td>
<td>28</td>
</tr>
<tr>
<td>SP</td>
<td>Surge Preventing Stepped-Closure Addition</td>
<td>29</td>
</tr>
<tr>
<td>EC</td>
<td>PLC Controlled Valve</td>
<td>30</td>
</tr>
<tr>
<td>DE</td>
<td>Deluge Dry-pipe and Pre-action Valves</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Pilots and Accessories</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Other Dorot Products</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Typical Applications</td>
<td>35</td>
</tr>
</tbody>
</table>
Dorot Series 100

The direct sealing diaphragm valves were introduced to the world market for the first time by DOROT CONTROL VALVES at 1982. This valve is operated by the pressure of the pipeline and is used for various control applications in water supply, fire fighting, industrial, sewage and irrigation systems.

The only moving component is a reinforced diaphragm, which:

a. Drip tight seals the liquid passage in the closed valve
b. Allows free passage in the fully open valve with minimal obstruction to the flow line
c. Throttles the flow passage in the modulating valve, as dictated by the pressure in the control chamber

The valve can be closed or modulated using the line pressure or an external separate pressure source that is equal or higher than the line pressure.

Dorot S-100 valves are made for easy, inline maintenance, executed also by unskilled personal using basic tools. There are no shafts, bearings or seals that may corrode and there is no wear and tear by dirty abrasive water or chemicals.

Features and benefits

- Structural simplicity
- Superb design featuring exceptionally low pressure losses at high flow rates
- Can be used for regulating from no-flow to maximal flow with no need for additional throttling devices or by-pass valves
- For natural liquids, sea water and industrial effluents
- A wide selection of materials, coating and diaphragm types
- All valve models fit a wide variety of control applications using Dorot pilot valves
Principle of operation

3-way control system

The main valve is controlled by a manually, electrically or pressure actuated selector that:

1. Introduces the upstream pressure or an external pressure source to the valve’s control chamber, thus pressing the valve diaphragm from top to a closed position.

2. Opens the valve by relieving the pressure from the control chamber and enabling the internal pressure in the line to push the valve diaphragm up and creating an unrestricted, full flow passage.

3. Shuts all passages to and from the control chamber, thus keeping the main valve in a fixed position. This position does not exist in devices used for ON/OFF control applications but is necessary in modulating valves.

2-way control system

A control system that consists of two restrictions:

a. A fixed restriction at the upstream side of the control system (nozzle or needle valve)

b. ON/OFF device (valve, relay or solenoid) or a modulating pilot valve with a larger passage than restriction ‘a’ that is installed at the downstream side of the control system. The main valve position is affected by the downstream pilot valve ‘b’ in the following ways:

1. When the pilot valve is closed, no water can be vented to the downstream and the main valve is closed by the upstream pressure, introduced into the valve control chamber through the restriction ‘a’.

2. Opening the valve is enabled when the pilot ‘b’ is fully open and allows the drainage of pressure in the control chamber to the downstream. At this position the pressure in the control chamber nearly equals that of the downstream.

3. Throttling pilot valve ‘b’ so the flow running through it equals the flow entering through the restriction ‘a’, keeps a fixed volume of water in the control chamber and the main valve in a fixed position.
Available Models

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Type</th>
<th>Connection</th>
<th>Material</th>
<th>Max. Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Threaded</td>
<td>Cast Iron</td>
<td>16bar / 250psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threaded</td>
<td>Bronze</td>
<td>25bar / 360psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grooved</td>
<td>Cast Iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flanged</td>
<td>Bronze</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flanged</td>
<td>Cast Iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flanged</td>
<td>Ductile Iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threaded</td>
<td>Cast Iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grooved</td>
<td>Cast Iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flanged</td>
<td>Ductile Iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threaded</td>
<td>Ductile Iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flanged</td>
<td>Ductile Iron</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td>53</td>
<td>47</td>
<td>87</td>
</tr>
<tr>
<td>77</td>
<td>82</td>
<td>84</td>
<td>53A</td>
<td>91</td>
</tr>
<tr>
<td>67</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Available Sizes</th>
<th>mm</th>
<th>inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Design Specifications

<table>
<thead>
<tr>
<th>Materials</th>
<th>Standard</th>
<th>Optional *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body and Bonnet</td>
<td>Cast Iron, Ductile Iron, Bronze</td>
<td>Cast Steel, Stainless Steel</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>Natural Rubber</td>
<td>NBR, EPDM, Neoprene</td>
</tr>
<tr>
<td>Spring</td>
<td>SST 302</td>
<td>SST 316</td>
</tr>
<tr>
<td>Nuts And Bolts</td>
<td>Coated Steel</td>
<td>SST</td>
</tr>
<tr>
<td>Coating</td>
<td>Polyester</td>
<td>Epoxy, Nylon, Rubber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connections</th>
<th>Standard</th>
<th>Optional *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanges</td>
<td>ISO 2084, 2441, 5752</td>
<td>ANSI B16, JIS B22, AS 10</td>
</tr>
<tr>
<td>Threads</td>
<td>F-BSP</td>
<td>F-NPT</td>
</tr>
<tr>
<td>Control Bores</td>
<td>1/8", 1/4", 1/2" NPT</td>
<td></td>
</tr>
</tbody>
</table>

* Others Upon Request

Non Standard Bonnets

- Throttling Bonnet
- Position Indicating Bonnet
Technical Data

Diaphragm Selection Table*

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Type</th>
<th>No.</th>
<th>Pressure Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>inch</td>
<td>mmw cm</td>
<td>psi</td>
</tr>
<tr>
<td>20, 25</td>
<td>¾”, 1”</td>
<td>Standard</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Pressure</td>
<td>85</td>
</tr>
<tr>
<td>40</td>
<td>1½”</td>
<td>Standard</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Low Pressure</td>
<td>82</td>
</tr>
<tr>
<td>50, 65, 80R</td>
<td>2”, 2½”, 3R</td>
<td>Standard</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPDM for potable-water use</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Low Pressure</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extreme</td>
<td>60</td>
</tr>
<tr>
<td>50HP</td>
<td>2”HP</td>
<td>High Pressure</td>
<td>02</td>
</tr>
<tr>
<td>80, 100</td>
<td>3”, 4”</td>
<td>Standard</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPDM for potable-water use</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Pressure</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Low Pressure</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extreme</td>
<td>08</td>
</tr>
<tr>
<td>80HP</td>
<td>3”HP</td>
<td>High Pressure</td>
<td>05</td>
</tr>
<tr>
<td>100HP</td>
<td>4”HP</td>
<td>High Pressure</td>
<td>07</td>
</tr>
<tr>
<td>150, 200R</td>
<td>6”, 8R</td>
<td>Standard</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPDM for potable-water use</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Pressure</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Low Pressure</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extreme</td>
<td>04</td>
</tr>
<tr>
<td>150HP</td>
<td>6”HP</td>
<td>High Pressure</td>
<td>02</td>
</tr>
<tr>
<td>200, 300, 350</td>
<td>8”, 12”, 14”</td>
<td>Standard</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPDM for potable-water use</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Pressure</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Low Pressure</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extreme</td>
<td>01</td>
</tr>
<tr>
<td>200HP</td>
<td>8”HP</td>
<td>High Pressure</td>
<td>00</td>
</tr>
<tr>
<td>250</td>
<td>10”</td>
<td>Standard</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPDM for potable-water use</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Pressure</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Low Pressure</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extreme</td>
<td>00</td>
</tr>
<tr>
<td>250HP, 400HP,</td>
<td>10”HP, 16”HP,</td>
<td>High Pressure</td>
<td>00</td>
</tr>
<tr>
<td>500HP, 600HP</td>
<td>20”HP, 24”HP</td>
<td>Low Pressure</td>
<td>00</td>
</tr>
</tbody>
</table>

* Standard Diaphragm: Nylon Reinforced Natural Rubber. Optional diaphragm materials such as NBR, Neoprene, EPDM etc. are available. These include potable-water compatible diaphragms for different pressure-ratings and valve-models other than the ones specified above.

** HP = High Pressure

Pressure Rating

Pressure rating of series 100 valves is body strength, connection standard and diaphragm type.

Pressure rating of valve body of standard models: 16 Bar / 250 psi.
Pressure rating of valve body of high pressure models: 25 Bar / 360 psi.
Connection standard is marked on the identification plate, assembled on the valve body.

Diaphragms operation pressure range is presented at the above table.
Straight Flow, Threaded Connection

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>D (mm)</th>
<th>W (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cast Iron</td>
<td>Bronze</td>
<td>Cast Iron</td>
<td>Bronze</td>
<td>Cast Iron</td>
</tr>
<tr>
<td>20</td>
<td>115</td>
<td>4.53</td>
<td>112</td>
<td>4.41</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>120</td>
<td>4.72</td>
<td>119</td>
<td>4.69</td>
<td>52</td>
</tr>
<tr>
<td>40</td>
<td>170</td>
<td>6.69</td>
<td>149</td>
<td>5.87</td>
<td>93</td>
</tr>
<tr>
<td>50</td>
<td>188</td>
<td>7.4</td>
<td>184</td>
<td>7.24</td>
<td>115</td>
</tr>
<tr>
<td>65</td>
<td>219</td>
<td>8.62</td>
<td>212</td>
<td>8.35</td>
<td>118</td>
</tr>
<tr>
<td>80R*</td>
<td>225</td>
<td>8.86</td>
<td>221</td>
<td>8.7</td>
<td>126</td>
</tr>
<tr>
<td>80</td>
<td>316</td>
<td>12.44</td>
<td>316</td>
<td>12.44</td>
<td>135</td>
</tr>
</tbody>
</table>

*R = Reduced Port

Straight Flow, Grooved Connection (Vic.)

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>D (mm)</th>
<th>W (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>177</td>
<td>6.97</td>
<td>81</td>
<td>3.19</td>
<td>26</td>
</tr>
<tr>
<td>50</td>
<td>190</td>
<td>7.48</td>
<td>100</td>
<td>3.94</td>
<td>33</td>
</tr>
<tr>
<td>80R 3R</td>
<td>201</td>
<td>7.91</td>
<td>120</td>
<td>4.72</td>
<td>47</td>
</tr>
<tr>
<td>80</td>
<td>286</td>
<td>11.26</td>
<td>124</td>
<td>4.88</td>
<td>47</td>
</tr>
<tr>
<td>100</td>
<td>317</td>
<td>12.46</td>
<td>133</td>
<td>5.24</td>
<td>60</td>
</tr>
<tr>
<td>150</td>
<td>392</td>
<td>15.43</td>
<td>250</td>
<td>9.84</td>
<td>82</td>
</tr>
</tbody>
</table>

Angle Flow, Grooved Connection (Vic.)

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>H (mm)</th>
<th>D (mm)</th>
<th>W (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>240</td>
<td>9.45</td>
<td>170</td>
<td>6.69</td>
</tr>
<tr>
<td>100</td>
<td>250</td>
<td>9.84</td>
<td>185</td>
<td>7.28</td>
</tr>
</tbody>
</table>

Angle Flow, Threaded Connection

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>H (mm)</th>
<th>D (mm)</th>
<th>W (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>110</td>
<td>4.33</td>
<td>75</td>
<td>2.95</td>
</tr>
<tr>
<td>50</td>
<td>136</td>
<td>5.35</td>
<td>90</td>
<td>3.54</td>
</tr>
<tr>
<td>80R 3R</td>
<td>165</td>
<td>6.5</td>
<td>114</td>
<td>4.49</td>
</tr>
<tr>
<td>80</td>
<td>239</td>
<td>9.41</td>
<td>145</td>
<td>5.71</td>
</tr>
</tbody>
</table>

Angle Flow, Flanged Connection

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>H (mm)</th>
<th>D (mm)</th>
<th>W (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>276</td>
<td>10.9</td>
<td>174</td>
<td>6.85</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
<td>11.8</td>
<td>185</td>
<td>7.28</td>
</tr>
<tr>
<td>150</td>
<td>380</td>
<td>15</td>
<td>230</td>
<td>9.06</td>
</tr>
</tbody>
</table>
Technical Data

Dimensions and Weights

Straight Flow, Flanged Connection - Standard Models 16 Bar / 250 psi

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>L</th>
<th>H</th>
<th>D</th>
<th>W</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
<td>mm</td>
</tr>
<tr>
<td>40</td>
<td>1 1/2</td>
<td>186</td>
<td>7.32</td>
<td>153</td>
<td>6.02</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>200</td>
<td>7.87</td>
<td>166</td>
<td>6.54</td>
</tr>
<tr>
<td>65</td>
<td>2 1/2</td>
<td>214</td>
<td>8.43</td>
<td>185</td>
<td>7.28</td>
</tr>
<tr>
<td>80R</td>
<td>3R</td>
<td>200</td>
<td>7.87</td>
<td>202</td>
<td>7.95</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>285</td>
<td>11.22</td>
<td>200</td>
<td>7.87</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>305</td>
<td>12.01</td>
<td>230</td>
<td>9.06</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td>390</td>
<td>15.35</td>
<td>314</td>
<td>12.36</td>
</tr>
<tr>
<td>200R</td>
<td>8R</td>
<td>385</td>
<td>15.16</td>
<td>350</td>
<td>13.78</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>460</td>
<td>18.11</td>
<td>400</td>
<td>15.75</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>535</td>
<td>21.06</td>
<td>445</td>
<td>17.52</td>
</tr>
<tr>
<td>300</td>
<td>12</td>
<td>580</td>
<td>22.83</td>
<td>495</td>
<td>19.49</td>
</tr>
<tr>
<td>350</td>
<td>14</td>
<td>580</td>
<td>22.83</td>
<td>495</td>
<td>19.49</td>
</tr>
</tbody>
</table>

Straight Flow, Flanged Connection - High Pressure Models 25 Bar / 360 psi

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>L</th>
<th>H</th>
<th>D</th>
<th>W</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
<td>mm</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>228</td>
<td>8.98</td>
<td>169</td>
<td>6.65</td>
</tr>
<tr>
<td>50H</td>
<td>2TH</td>
<td>250</td>
<td>8.98</td>
<td>120</td>
<td>6.65</td>
</tr>
<tr>
<td>65</td>
<td>2 1/2</td>
<td>233</td>
<td>9.18</td>
<td>185</td>
<td>7.28</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>310</td>
<td>12.2</td>
<td>237</td>
<td>9.33</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>356</td>
<td>14.02</td>
<td>263</td>
<td>10.35</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td>436</td>
<td>17.17</td>
<td>378</td>
<td>14.88</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>530</td>
<td>20.87</td>
<td>481</td>
<td>18.94</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>636</td>
<td>25.04</td>
<td>546</td>
<td>21.5</td>
</tr>
<tr>
<td>400</td>
<td>16</td>
<td>709</td>
<td>27.91</td>
<td>830</td>
<td>32.68</td>
</tr>
<tr>
<td>450</td>
<td>18</td>
<td>715</td>
<td>28.15</td>
<td>830</td>
<td>32.68</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
<td>900</td>
<td>35.43</td>
<td>970</td>
<td>38.19</td>
</tr>
<tr>
<td>600</td>
<td>24</td>
<td>900</td>
<td>35.43</td>
<td>970</td>
<td>38.19</td>
</tr>
</tbody>
</table>

* TH = Threaded
Series 100 Valves

Technical Data

Hydraulic Performance

Valve Size	m³/hr	gpm	mm	20	25	40	50	65	80	80R	100	150	200	200R	250	300	350	400	450	500	600	
Max. Flow	Continuance																					
m³/hr	gpm																					
Max. Flow	Intermittent																					
m³/hr	gpm																					
Minimal Flow	m³/hr @ 1 bar	Kv	m³/hr	gpm																		
Kgpm @ 1 psi	Cv*	m³/hr @ 1 bar	Kgpm @ 1 psi	Cv*																		

* High pressure models

Cavitation Data

- **Cavitation zone**
- **Safe zone for Bronze valves**
- **Safe operation zone**

Headloss Chart

\[
\Delta P (\text{Bar}) = \left(\frac{Q^2}{K_v} \right) \text{m}^3/\text{hr} \\
\Delta P (\text{Psi}) = \left(\frac{Q^2}{C_v} \right) \text{gpm}
\]
Main Components

Pilot valves for superb regulation at high reliability

Internal SST spring: allows the use of wide range of diaphragm rubber types

Polymeric coating, UV and corrosion resistant

Components

<table>
<thead>
<tr>
<th>Component No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Body</td>
</tr>
<tr>
<td>2</td>
<td>Bonnet</td>
</tr>
<tr>
<td>3</td>
<td>Diaphragm</td>
</tr>
<tr>
<td>4</td>
<td>Spring</td>
</tr>
<tr>
<td>5</td>
<td>Spring Disc</td>
</tr>
<tr>
<td>6</td>
<td>Bolt</td>
</tr>
<tr>
<td>7</td>
<td>Short Bolt</td>
</tr>
<tr>
<td>8</td>
<td>Washer</td>
</tr>
<tr>
<td>9</td>
<td>Nut</td>
</tr>
<tr>
<td>10</td>
<td>Suspension Ring (Hook)</td>
</tr>
</tbody>
</table>
Manually Controlled Valve

Description
The valve is controlled manually by a three port selector that allows the user to select the closed, opened or remote-controlled position of the valve. The control is effected effortlessly and quickly, even under high pressure conditions.

Features
- Effortless open/close activation
- Fast response
- Clog-free operation
- Can be added as manual over-ride to any other control function

Purchase Specifications
The valve will be a direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve position will be controlled by a hand operated selector valve. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow and allowed headloss
- Preferred selection of low pressure diaphragms when the valve is expected to stay in open position for long periods

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. 3-way selector valve
5. Accelerator relay (optional for valves larger than 150mm/6”)
* Optional component

Typical Application
Dorot Manually controlled valve installed in an underground, flooded pit. Manual activation is enabled from top by the selector valve.
Solenoid Controlled Valve

Description
A 3-way solenoid valve, activated by an electric current or an electric pulse, opens or closes the main valve. The standard valve is supplied in the “normally closed” position. The “normally open” position is optional. Electric activation can be added to other control applications on request.

Features
- Low power electric activation
- Fast response
- Simple and reliable design
- Can be added as electric over-ride to any other control function

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve position will be controlled by an electric solenoid valve. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow and allowed headloss
- Prefer selection low pressure diaphragms when the valve is expected to stay in open position for long periods
- The valve can be opened by the electric command (NC) or closed by it (NO). The definition refers to the main valve operation and not the solenoid’s characteristics

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. 3/2 Solenoid valve
5. Accelerator relay (optional for valves larger than 150mm/6”)
* Optional component

Typical Application
Dorot Solenoid Controlled valve, controlled by a local controller.
Control Functions

RC Hydraulic Remote Controlled Valve

Description
A 3-way relay valve, activated by hydraulic or pneumatic pressure command, opens or closes the main valve. The standard valve is supplied in the “normally closed” position. The “normally open” position is optional. Hydraulic activation can be added to other control applications on request.

Features
- Fast response even for long control lines
- Simple and reliable design
- Can be added as pressure command over-ride to any other control function

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve position will be controlled by a hydraulic relay. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow and allowed headloss
- Prefer selection low pressure diaphragms when the valve is expected to stay in open position for long periods
- The valve can be opened by the pressure command (NC) or closed by it (NO). The definition refers to the main valve operation and not the relay’s characteristics

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Manual over-ride selector valve*
5. Accelerator relay (other types are optional)

* Optional component

Typical Application
Dorot Hydraulic Remote Controlled Valve, activated by a remote pressure command.
PR Pressure Reducing Valve

Description
The valve maintains a preset downstream pressure, regardless of upstream pressure or flow rate fluctuation. The main valve is controlled by either a 3-way pilot valve (allowing full opening when upstream pressure drops below the pressure set-point), or by a 2-way pilot valve (creating a minimal differential in open position).

Features
- Accurate, stable control from no-flow to full flow
- Simple and reliable design
- Exceptionally low losses at high flow
- WRAS Approval no. 04251

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve will be operated by a pressure reducing pilot valve to achieve constant outlet pressure, regardless of upstream pressure or flow variations. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow and allowed headloss
- In case upstream pressure may drop to the required set pressure, select 3-way control pilot
- Large pressure differentials may cause cavitation damage. Consult Dorot for solutions if such conditions are expected

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Manual over-ride selector valve*
5. 3-way pilot valve (other types are optional)

* Optional component

Typical Application
Dorot Pressure Reducing Valve reduces varying supply pressure to a stabilized downstream pressure.
PS Pressure Sustaining & Relief Valve

Description
The valve maintains upstream pressure, regardless of flow rate variations. The valve will be in the “closed” position if the upstream pressure drops below the set-point and will fully open when the upstream pressure exceeds the set-point.

Features
- Accurate, stable control from no-flow to full flow
- Simple and reliable design
- Exceptionally low losses at high flow

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve will be operated by a pressure sustaining pilot valve to maintain constant inlet pressure, regardless of flow variations. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow and allowed headloss
- Check for possible cavitation conditions and consult Dorot in case such conditions are expected

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Manual over-ride selector valve*
5. 3-way pilot valve (other types are optional)

* Optional component

Typical Application
Dorot Pressure Relief Valve relieving pump surplus flow from the system, thus preventing high pressure at low demand conditions.
Pressure Differential Sustaining Valve

Description
The valve maintains a preset pressure differential between its upstream and downstream sides. The valve can control booster pump discharge, heating and cooling systems, bypass configurations, filters and other similar systems.

Features
• Accurate, stable control from no-flow to full flow
• Simple and reliable design
• Exceptionally low losses at high flow

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve will be operated by a pressure sustaining differential pilot valve so to maintain a minimal pressure differential, regardless of flow variations. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
• Valve size same as line or one size smaller
• Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
• The valve should be suited for the maximal flow and allowed headloss
• Check for possible cavitation conditions and consult Dorot in case such conditions are expected
• The connection points of the sensing tubes must be selected in locations free of turbulence and local interferences

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Manual over-ride selector valve*
5. 3-way pilot valve (other types are optional)

* Optional component

Typical Application
Dorot Pressure Differential Sustaining Valve controls the flow at the discharge of a booster pump whose suction pressure varies.
Control Functions

Flow Control Valve

Description
The valve limits the flow rate in the network to a preset value regardless of upstream pressure variations. The valve fully opens when the flow rate drops below the set point.

Features
• Accurate, stable control
• Simple and reliable design
• Low losses when the demand is lower than the set flow

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve will be operated by a pressure reducing differential pilot valve for controlling the flow through the main valve, regardless of pressure variations. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
• Valve size same as line or one size smaller
• Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
• A 1/2" pressure sensing port should be provided, upstream of the valve
• Check for possible cavitation conditions and consult Dorot in case such conditions are expected
• An additional pressure loss of about 2.5 mwc is created by the orifice plate (at the set flow)

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Manual over-ride selector valve*
5. 3-way differential pilot valve (other types are optional)
6. Orifice plate

* Optional component

Typical Application
Dorot Flow Control Valve limits the flow to a specific customer.
Excessive Flow Shut-off Valve

Description
The valve closes drip tight when the flow rate exceeds the normal value (due to pipe rupture). The valve will manually re-set open after fixing the break.

Features
- Hydraulic burst protection. No electronic controllers are used
- Simple and reliable design
- Low losses

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve will be operated by a pressure reducing differential pilot valve for closing when the flow through the main valve exceeds the safe level, regardless of pressure variations. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- A 1/2” pressure sensing port should be provided, upstream of the valve
- The valve is adjusted to close when the flow rate exceeds the maximal design flow by 10%-20%
- An additional pressure loss of about 2 mwc is created by the orifice plate (at the normal flow)

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Manual over-ride selector valve*
5. 3-way differential pilot valve (other types are optional)
6. Orifice plate

* Optional component

Typical Application
Dorot excessive flow shutoff valve installed to prevent flood damages caused by pipe rupture.
Modulating Float Controlled Valve

Description
The main valve is controlled by a float valve, located in the tank or reservoir and set at the required maximum water level. The valve maintains the maximum level continuously.

Features
- Accurate and repeatable level control
- Simple and reliable design
- Easy installation and maintenance
- Adjusts the inlet flow to the reservoir’s outlet flow

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure and be operated by a modulating, 2-way float activated pilot valve. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as the fill line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow
- Upstream pressure at closed position should be at least 10m (15psi) higher than the hydrostatic water pressure at the downstream
- Large pressure differentials may cause cavitation damage. Consult Dorot for solutions if such cases are expected
- Prefer use of differential level control in case excessive noise should be avoided (residential areas)

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Needle valve
5. Modulating float pilot valve

* Optional component

Typical Application
Dorot Modulating Float Controlled valve prevents tank overflow.
FLEL Electric Float Controlled Valve

Description

An electric sensor float, located in the tank/reservoir, sends a command to a solenoid controlled valve. The main valve will fully open when the solenoid activated and will close drip tight when the solenoid de-energized, thus enabling accurate and reliable differential level control.

Optional Addition: Stepped Surge-Preventing Closure.

Features

- Accurate and repeatable differential level control
- Low power electric activation
- Fast response
- Simple and reliable design
- Easy installation and maintenance

Purchase Specifications

The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage.

The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve position will be controlled by an electric solenoid valve activated from a float in the tank/reservoir. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing

- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations

- The valve should be suited for the maximal flow and allowed headloss
- The valve can be opened by the electric command (NC) or closed by it (NO). The definition refers to the main valve operation and not to the solenoid’s characteristics

Optional Control System Components:

1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. 3/2 Solenoid valve
5. Accelerator relay (optional for valves larger than 150mm/6”)
6. Electric float switch

* Optional component

Typical Application

Dorot Electric Float Controlled Valve controlling the water volume in a tank.
Differential Float Controlled Valve

Description
A float valve controls the main valve, closing it when the water reaches maximum level, and opening it when the water drops to its preset minimum level. The differential between the maximum and the minimum levels is adjustable. Optional Addition: Stepped Surge-Preventing Closure.

Features
- Accurate and repeatable differential level control
- Adjustable differential
- Fast response
- Simple and reliable design
- Easy installation and maintenance

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic pressure. The valve position will be controlled by a 4-way float pilot located at the top of the tank/reservoir. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow
- Upstream pressure at closed position should be at least 10m (15psi) higher than the static water pressure at the downstream
- Fast stream and waves may cause mechanical damage to the float levers. It is advisable to install the pilot in a still part of the reservoir

Typical Application
Dorot Differential Float Pilot Controlled Valve controlling the water volume in a filling or emptying tank.

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Manual over-ride selector valve*
5. Accelerator relay (optional for valves larger than 150mm/6")
6. 4-way differential pilot valve (other types are optional)

* Optional component
Altitude Pilot Controlled Valve

Description
The main valve is controlled by a highly sensitive pilot, located outside the tank. The pilot opens or closes the valve in response to the static pressure of the water. The pilot allows for differential adjustments between the maximum and minimum level. Optional Addition: Stepped Surge-Preventing Closure.

Features
• Accurate and repeatable differential level control
• Fast response
• Easy access - no float is located in the tank/reservoir
• Simple and reliable design
• Easy installation and maintenance

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve position will be controlled by a hydrostatic pressure sensing pilot valve. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
• Valve size same as line or one size smaller
• Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
• The valve should be suited for the maximal flow
• The pilot valve must be located at least 2 meters below the closing level in the tank
• When water-hammer/surge expected during closure - add stepped surge preventing closure function to the altitude control pilot

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Manual over-ride selector valve*
5. High sensitivity altitude control pilot valve

* Optional component

Typical Application
Dorot Altitude Pilot Controlled Valve controlling the water volume in an elevated tank.
BC Booster Pump Control Valve

Description
The valve eliminates damaging surges caused by pump start-up and shut-off. The electrically activated valve gradually opens on pump start up, and slowly closes before the pump is switched off. The valve will automatically close drip tight in case of power failure. Optional Additions: Flow Rate Limitation, Extended Closure, Two Stage Operating, Pressure Reducing and Pressure Sustaining.

Features
- No slam operation
- Exceptionally low losses at high flow conditions
- Simple and reliable design
- Easy installation and maintenance

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve position will be controlled by an electric solenoid valve with adjustable open close speed control valves. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow
- Closure time is related to the pipe length and should be extended for longer pipe
- For power failure situations, add a fast reacting checkvalve in series and a surge anticipating valve to relief possible surges

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. 3/2 Solenoid valve
5. Accelerator relay (optional for valves larger than 150mm/6”)
6. Open/close speed adjustment needle valve
7. Check valve
8. Limit switch assembly

* Optional component

Typical Application
Dorot Booster Pump Control Valve preventing surges caused by pump startup and shutdown and drainage of main pipe.
Deep Well (Borehole) Pump Control Valve

Description
The valve eliminates surges caused by the start-up and shut-off of vertical or submersible pumps. It is a relief valve, assembled on a T-junction of the main pipeline. When the pump starts, the valve slowly closes, gradually increasing network pressure. Before pump shut-off, the valve slowly opens, gradually reducing network pressure.

Features
- No slam operation
- Simple and reliable design
- Easy installation and maintenance
- Low Resistance and high flow capacity

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve position will be controlled by an electric solenoid valve with adjustable open/close speed control valves. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- The valve should be sized to match the well flow at 5 mwc/8 psi in the valve site (pump head water table depth):
 \[D[\text{mm}] \geq 170 \times \sqrt{\text{Flow [m}^3/\text{hr]}}\]
 \[D[\text{inch}] \geq 0.55 \times \sqrt{\text{Flow [gpm]}}\]

Design Considerations
- The valve should be suited for the maximal flow
- Closure time is related to the pipe length and should be extended for longer pipe
- For power failure situations, add a fast reacting check valve in series and a surge anticipating valve to relief possible surges

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. 3/2 Solenoid valve
5. Accelerator relay (optional for valves larger than 150mm/6”)
6. Open/close speed adjustment needle valve
7. Check valve
8. Limit switch assembly

* Optional component

Typical Application
Dorot Deep Well Pump Control Valve preventing surges caused by pump start-up or shut-off.
Series 100 Valves

Control Functions

RE Surge Anticipating Valve

Description

The valve protects the pumping system from water hammer, caused by sudden pump shut-off (case of power failure, for example). The valve is assembled on a T-junction of the main pipeline, instantly opens when the pump stops, relieving the returning high pressure wave. The valve slowly closes once the pressure returns to the static level. The valve also functions as a pressure relief valve.

Features

- No slam operation
- Simple and reliable design
- Easy installation and maintenance
- Low Resistance and high flow capacity
- Protection for sewage as well as clean water pumping systems

Purchase Specifications

The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve will be operated by pressure relief pilot valve for opening at a low pressure set point and another pilot for pressure relief at a high pressure set-point. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing

The valve should be sized to match the 80% of the normal flow at static head in the valve site:

\[
D[\text{mm}] \leq \sqrt{250 \times \text{Flow}[\text{m}^3/\text{hr}] / \sqrt{\text{Pressure}[\text{mwc}]}}
\]

\[
D[\text{inch}] \leq \sqrt{(0.109 \times \text{Flow}[\text{gpm}] / \sqrt{\text{Pressure}[\text{psi}]})}
\]

Design Considerations

- Install a manual separation/throttling valve, upstream of the valve position
- Closure time is related to the pipe length and should be extended for longer pipe
- The valve sensor tube must be connected to the main line

Optional Control System Components:

1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Low-pressure relief pilot valve
5. High-pressure relief pilot valve
6. Needle valve
7. Pressure gauge

* Optional component

Typical Application

Dorot Surge Anticipating Valve prevents water-hammer surges caused by an unexpected pump shut-off.
Quick Pressure-relief Valve

Description
The valve opens instantly when the pressure in the pipeline exceeds the safe level, thus relieving excessive pressure from the network. When the pressure returns to normal, the valve closes slowly, at an adjustable pace.

Features
- No slam operation
- Simple and reliable design
- Easy installation and maintenance
- Low resistance and high flow capacity
- Protection for sewage as well as clean water pumping systems

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve will be operated by a pressure relief pilot valve for fast opening at a high pressure set-point. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- The valve should be sized to match the expected relief flow at the set opening pressure:
 \[D[\text{mm}] \leq \sqrt{250 \times \text{Flow}\left[\text{m}^3/\text{hr}\right] / \sqrt{\text{Pressure}\left[\text{mwc}\right]}} \]
 \[D[\text{inch}] \leq \sqrt{0.109 \times \text{Flow}\left[\text{gpm}\right] / \sqrt{\text{Pressure}\left[\psi\right]}} \]

Design Considerations
- Install a manual separation valve, upstream of the valve position
- Closure time is related to the pipe length and should be extended for longer pipe
- The valve opens instantly at the set pressure. For regulating the system pressure use a Pressure Sustaining Relief Valve and not a Quick Relief valve

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Pressure relief pilot valve
5. Needle valve

* Optional component

Typical Application
Dorot Quick Pressure-relief Valve protects a system against pressure surges caused by pump start-up or valves closure.
TO Two Stage Opening Addition

Description
The device can be added to any control function and will prevent damage caused by too fast filling of a drained pipeline. The flow rate will be restricted, until the network, downstream of the valve is full and than a full opening of the valve is enabled. Please consult DOROT for more details.

Features
• Can be added to any pipe-filling control function
• User adjusted filling pace
• Completely hydraulic – no electronic controllers, batteries or relays are used
• Simple and reliable design

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve’s opening will be restricted by a two-stage opening control that limits the filling flow until the downstream system is full. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
• Valve size same as line or one size smaller
• Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
• The valve should be suited for the maximal flow and allowed headloss
• Prefer selection low pressure diaphragms when the valve is expected to stay in open position for long periods

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Pilot valve
5. 3-way selector valve*

Typical Application
Dorot two-stage function prevents water-hammer/surges caused by fast drained pipe filling.

* Optional component
Surge Preventing Stepped-Closure Addition

Description
The device can be added to any control function and automatically adjusts the closing speed of a valve that is located at the end of a long pipeline. This ensures a moderate flow change pace that prevents pressure surges from evolving. Please consult DOROT for more details.

Features
- Can be added to any fast closing control function
- Automatically self-adjusted closing pace
- Completely hydraulic – no electronic controllers, batteries or relays are used
- Simple and reliable design

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve’s closure pace will be controlled by a stepped closure control pilot that stops the closing procedure whenever surge waterhammer conditions evolve. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
- Valve size same as line or one size smaller
- Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
- The valve should be suited for the maximal flow and allowed headloss
- Prefer selection low pressure diaphragms when the valve is expected to stay in open position for long periods
- Should be used whenever the supply pipe is longer than 2 km/ 1.2 mile and the flow speed exceeds 1.5 m/sec

Optional Control System Components:
1. Main Valve
2. Self-flushing filter
3. Cock valve*
4. Stepped closure adjusting pilot valve
5. 3-way selector valve*

* Optional component

Typical Application
Dorot stepped closure function prevents water-hammer surges caused by fast closing level control valve.
EC PLC Controlled Valve

Description
The valve is controlled by a PLC controller that enables local or remote control of various functions such as, time related operation, the batching of liquid, and conditional (automatically modified) control parameters, in various applications. A recommended option is using the Dorot “ConDor” controller that enables the selection from a vast range of pre-programmed control functions and their combinations.

Features
• Can perform any control function
• Highly accurate and reliable electronic control
• Low power actuation
• Simple and reliable design
• Controlled by Dorot ConDor valve controller or by a third party controller

Purchase Specifications
The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve position will be determined by a set of two solenoid valves controlled by a PLC controller. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing
• Valve size same as line or one size smaller
• Maximum flow speed for continuous operation 5.5 m/sec (18 ft/sec)

Design Considerations
• The valve should be suited for the maximal flow and allowed headloss
• Solenoid wiring diameter should be selected so that the activation voltage - losses will equal the rated value ±10%

Optional Control System Components:
1 Main Valve
2 Self-flushing filter
3 Cock valve*
4 2/2, NC solenoid valve
5 3-way selector valve*

* Optional component

Typical Application
Dorot PLC Controlled Valve adjusts the flow rate following a set-point signal sent from a remote center.
Control Functions

Series 100 Valves

Deluge Dry-pipe and Pre-action Valves

Description

The valve prevents flow of water into fire extinguishing sprinklers system until it is activated by the activation devices. Different valve and control system configurations are available to meet the customer and relevant standards demands. Please check Dorot Fire-Fighting publications for further information.

Features

- Fast opening
- Simple and reliable design
- Automatic reset
- Wide range of applications
- UL Approval no. VLFT EX.6543

Purchase Specifications

The valve will be hydraulic, direct sealing diaphragm type, which allows inline maintenance. No stem, shaft or guide bearing will be located within the water passage. The valve will be activated by the line pressure or by an external hydraulic or pneumatic pressure. The valve and the controls will be a Dorot Series 100 valve or similar in all aspects.

Quick Sizing

- Valve size same as line or one size smaller
- Maximum flow speed for intermittent operation 8 m/sec (26 ft/sec)

Design Considerations

- The valve should be suited for the maximal flow and allowed headloss
- Check Dorot catalogue for Fire Fighting Valves for more information with regards to valve and applications types

Optional Control System Components:

1. Main Valve
2. Self-flushing filter
3. Manual activation valve
4. Solenoid activation*
5. Pilot activation (by detection line)*
6. Drain valve

* Optional component

Typical Application

Dorot valve, activated by a splinker detection line.
Plastic Mini Pilots
For valve sizes 20mm to 100mm - 3/4" to 4"
Pressure rating: 10 bar / 145 psi

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-100</td>
<td>3-way pressure reducing pilot valve</td>
</tr>
<tr>
<td>29-200</td>
<td>3-way multi purpose (pressure reducing and sustaining) pilot valve</td>
</tr>
<tr>
<td>29-310</td>
<td>3-way differential multi purpose (flow control, differential pressure reducing)</td>
</tr>
</tbody>
</table>

Metal Mini Pilots
For valve sizes 20mm to 150mm - 3/4" to 6"
Pressure rating: 25 bar / 360 psi

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>68-410</td>
<td>2-way pressure reducing pilot valve</td>
</tr>
<tr>
<td>68-510</td>
<td>2-way pressure sustaining pilot valve</td>
</tr>
<tr>
<td>68-220</td>
<td>2-way (pressure rating 16bar / 250psi) quick-relief pilot valve</td>
</tr>
<tr>
<td>31-10R F/S</td>
<td>3-way multi purpose (pressure reducing and sustaining, flow-control) pilot valve</td>
</tr>
</tbody>
</table>

Metal Pilots
For valve sizes 40mm to 600mm - 1/2" to 24"
Pressure rating: 25 bar / 360 psi

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXPR</td>
<td>2-way pressure reducing pilot valve (CXRS - remote sensing, CXRD differential pressure reducing)</td>
</tr>
<tr>
<td>CXPS</td>
<td>2-way pressure sustaining pilot valve (CXSD differential pressure sustaining)</td>
</tr>
<tr>
<td>31-310</td>
<td>3-way multi purpose (pressure reducing and sustaining) pilot valve</td>
</tr>
<tr>
<td>76-200</td>
<td>3-way differential multi purpose (flow control, differential pressure sustaining)</td>
</tr>
<tr>
<td>68-710</td>
<td>2-way pressure sustaining pilot valve</td>
</tr>
</tbody>
</table>

High Sensitivity Metal Pilots
For valve sizes 40mm to 600mm - 11/2" to 24"
Pressure rating: 25 bar / 360 psi

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-110</td>
<td>3-way differential multi purpose (flow control, altitude control and differential pressure sustaining) with adjustable differential</td>
</tr>
<tr>
<td>70-410</td>
<td>2-way differential pressure reducing mini pilot valve (flow control and altitude control)</td>
</tr>
<tr>
<td>31-10H</td>
<td>3-way pressure reducing and differential control</td>
</tr>
</tbody>
</table>

Float Pilots
For valve sizes 40mm to 600mm - 1 1/2" to 24"
Pressure rating: 25 bar / 360 psi

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-200</td>
<td>Electric float</td>
</tr>
<tr>
<td>70-550</td>
<td>Vertical, differential, 3 and 4-way metal float pilot</td>
</tr>
<tr>
<td>70-300</td>
<td>Modulating, 2-way plastic float pilot for irrigation use (pressure rating: 8 bar / 115 psi)</td>
</tr>
<tr>
<td>70-400</td>
<td>Modulating, 2-way metal float pilot</td>
</tr>
<tr>
<td>70-610</td>
<td>Horizontal, differential, 3-way metal float pilot</td>
</tr>
</tbody>
</table>
Plastic Relays
For valve sizes 20mm to 150mm - 3/4” to 6”
Pressure rating: 10 bar / 145 psi
<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-300</td>
<td>3-way / 2 positions NO w. 3/8” ports hydraulic relay</td>
</tr>
<tr>
<td>‘Galit’</td>
<td>3-way / 2 positions NC or NO, small hydraulic relay</td>
</tr>
</tbody>
</table>

Metal Relays
For valve sizes 40mm to 600mm - 1” to 24”
Pressure rating: 25 bar / 360 psi

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>66-210</td>
<td>3-way / 2 positions NO (66-213: NC) hydraulic relay</td>
</tr>
<tr>
<td>66-300</td>
<td>3-way adjustable hydraulic relay</td>
</tr>
<tr>
<td>28-200</td>
<td>2-way / 2 positions hydraulic relay</td>
</tr>
<tr>
<td>28-300</td>
<td>3-way / 2 positions hydraulic relay</td>
</tr>
</tbody>
</table>

Mini Solenoids
For irrigation valve sizes 20mm to 150mm - 3/4” to 6”
Pressure rating: 10 bar / 145 psi
Operating Voltage:
AC: 24V
DC: 12V or 24V
Latch 7.5-30V

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>2-way NC solenoid valve</td>
</tr>
<tr>
<td>D3</td>
<td>3-way NC or NO solenoid valve</td>
</tr>
</tbody>
</table>

Heavy-duty Solenoids
For valve sizes 20mm to 600mm - 1” to 24”
Pressure rating: According to the selected orifice and solenoid type
Operating Voltage (others available upon request):
AC: 24V, 110V or 220V
DC: 12V or 24V
Latch 9V, 12V, 24V

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>2-way NC or NO solenoid valve</td>
</tr>
<tr>
<td>B3</td>
<td>3-way NC or NO solenoid valve</td>
</tr>
</tbody>
</table>

Control Filters
Self-Flushing, Inline - Stainless steel screen filter, located within the main valve, and rinsed continuously by the stream
Sizes: 1/4”, 1/2”

External, “Y” type - Stainless steel screen installed in a “Y” shaped body on the pressure source.
Sizes: 1/4”, 1/2”

External, large - A large volume external filter
Other Dorot Products

Automatic Control Valves

Super Gel - An innovative plastic valve designed for greenhouse, nursery and drip irrigation, agriculture and landscape applications.

uPVC Valves - Diaphragm sealing valves made of uPVC. For use with aggressive water and with underground (PVC) piping.

Series 300 - Disc seal, Globe type valve. Very accurate regulations at near zero flow conditions. Minimum head-loss while fully open.

Glass Reinforced Nylon Valves - Diaphragm sealing valves made of reinforced Polyamide used in Greenhouses, Field Crops, Irrigation, Landscaping, Water Treatment (non corrosive).

Series 500 - Disc seal, Y type valve. This valve is compact, partially made of new composite materials. Wide range of flow and pressure regulation.

Back Flushing Valves - Specially designed valves for back flow flushing of filtration systems. Available in Cast Iron or Glass Reinforced Nylon, Single or Double chamber operation.

Manual Valves

Butterfly Valves - Soft sealing valves (Wafer type) with options of gear, lever (or other) operation.

Non Return Valves - Swing check valves, tilting disc check valves, double flap check valves.

Gate Valves - Valves with soft and resilient or rigid sealing.

Air Release Valves

Non Metal Air Release Valves - Kinetic, Automatic and Combination Air Release Valves made of Polypropylene materials.

Water Meters

Dorot, part of Matholding Group since 2014, is one of the world’s leading manufacturers and developers of sustainable technologies and products for water control and optimization systems. With more than 70 years of experience, the company is a worldwide pioneer in providing high quality solutions for Hydraulic Controlled Valves and Air Valves.

Customers around the globe benefit on a daily basis from our experience and wide variety of solutions and services in the following areas:

- Waterworks Distribution Systems for civil and industrial engineering
- Fire Protection
- Industrial Applications such as Mining, Wastewater, Marine
- Water Treatment and Filtration
- Agricultural and Landscape Irrigation
- Water Metering and others

Innovation and expertise are the backbones of Dorot. It drove us into developing a diverse portfolio of water and other fluids systems application, in compliance with specifications and international quality standards. Customer satisfaction and recognition is of paramount importance for Dorot. This guarantees uncompromised know-how, expertise and professionalism in planning, designing and providing the optimal hydraulic control solutions.

We invite you to join our family of business partners. Together we can provide the best control solutions for the world’s most valuable natural resource: water
Hundreds of companies in the industrial, civil engineering, municipal and agricultural sectors around the world have chosen DOROT’s innovative and field-proven technologies. Since its establishment in 1946, DOROT leads the valves market with continued innovation, uncompromising excellence and firm commitment to its customers, consulting and supporting them through all stages of a project and overcoming challenges in R&D, design, implementation, and maintenance.